Insights into the Mechanism of Bovine CD38/NAD+Glycohydrolase from the X-Ray Structures of Its Michaelis Complex and Covalently-Trapped Intermediates

نویسندگان

  • Pascal F. Egea
  • Hélène Muller-Steffner
  • Isabelle Kuhn
  • Céline Cakir-Kiefer
  • Norman J. Oppenheimer
  • Robert M. Stroud
  • Esther Kellenberger
  • Francis Schuber
چکیده

Bovine CD38/NAD(+)glycohydrolase (bCD38) catalyses the hydrolysis of NAD(+) into nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose (cADPR). We solved the crystal structures of the mono N-glycosylated forms of the ecto-domain of bCD38 or the catalytic residue mutant Glu218Gln in their apo state or bound to aFNAD or rFNAD, two 2'-fluorinated analogs of NAD(+). Both compounds behave as mechanism-based inhibitors, allowing the trapping of a reaction intermediate covalently linked to Glu218. Compared to the non-covalent (Michaelis) complex, the ligands adopt a more folded conformation in the covalent complexes. Altogether these crystallographic snapshots along the reaction pathway reveal the drastic conformational rearrangements undergone by the ligand during catalysis with the repositioning of its adenine ring from a solvent-exposed position stacked against Trp168 to a more buried position stacked against Trp181. This adenine flipping between conserved tryptophans is a prerequisite for the proper positioning of the N1 of the adenine ring to perform the nucleophilic attack on the C1' of the ribofuranoside ring ultimately yielding cADPR. In all structures, however, the adenine ring adopts the most thermodynamically favorable anti conformation, explaining why cyclization, which requires a syn conformation, remains a rare alternate event in the reactions catalyzed by bCD38 (cADPR represents only 1% of the reaction products). In the Michaelis complex, the substrate is bound in a constrained conformation; the enzyme uses this ground-state destabilization, in addition to a hydrophobic environment and desolvation of the nicotinamide-ribosyl bond, to destabilize the scissile bond leading to the formation of a ribooxocarbenium ion intermediate. The Glu218 side chain stabilizes this reaction intermediate and plays another important role during catalysis by polarizing the 2'-OH of the substrate NAD(+). Based on our structural analysis and data on active site mutants, we propose a detailed analysis of the catalytic mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic competence of the cADP-ribose-CD38 complex as an intermediate in the CD38/NAD+ glycohydrolase-catalysed reactions: implication for CD38 signalling.

CD38/NAD(+) glycohydrolase is a type II transmembrane glycoprotein widely used to study T- and B-cell activation and differentiation. CD38 is endowed with two different activities: it is a signal transduction molecule and an ectoenzyme that converts NAD(+) into ADP-ribose (NAD(+) glycohydrolase activity) and small proportions of cADP-ribose (cADPR; ADP-ribosyl cyclase activity), a calcium-mobil...

متن کامل

Human CD38 is an authentic NAD(P)+ glycohydrolase.

The leucoyte surface antigen CD38 has been shown to be an ecto-enzyme with multiple catalytic activities. It is principally a NAD+ glycohydrolase that transforms NAD+ into ADP-ribose and nicotinamide. CD38 is also able to produce small amounts of cyclic ADP-ribose (ADP-ribosyl cyclase activity) and to hydrolyse this cyclic metabolite into ADP-ribose (cyclic ADP-ribose hydrolase activity). To cl...

متن کامل

Metabolism of nicotinamide adenine dinucleotide in human and bovine strainsof Mycobacterium tuberculosis.

A marked difference was found to exist between the nicotinamide adenine dinucleotide (NAD) glycohydrolase activity of human strains of Mycobacterium tuberculosis as compared with bovine strains. Human strains had from 6- to 20-fold higher NAD glycohydrolase activity than bovine strains. This finding explains the accumulation of free nicotinic acid in the culture medium by human strains and not ...

متن کامل

Insights into the Phosphoryl Transfer Catalyzed by cAMP-Dependent Protein Kinase: An X-ray Crystallographic Study of Complexes with Various Metals and Peptide Substrate SP20

X-ray structures of several ternary substrate and product complexes of the catalytic subunit of cAMP-dependent protein kinase (PKAc) have been determined with different bound metal ions. In the PKAc complexes, Mg(2+), Ca(2+), Sr(2+), and Ba(2+) metal ions could bind to the active site and facilitate the phosphoryl transfer reaction. ATP and a substrate peptide (SP20) were modified, and the reac...

متن کامل

Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses.

CD38 is a membrane-associated ecto-nicotinamide adenine dinucleotide (NAD+) glycohydrolase that is expressed on multiple hematopoietic cells. The extracellular domain of CD38 can mediate the catalysis of NAD+ to cyclic adenosine diphosphoribose (cADPR), a Ca2+-mobilizing second messenger, adenosine diphosphoribose (ADPR), and nicotinamide. In addition to its enzymatic properties, murine CD38 ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012